Spectral representation of the Love wave operator
نویسندگان
چکیده
منابع مشابه
The Generalized Wave Model Representation of Singular 2-D Systems
M. and M. Abstract: Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary co...
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملheterogeneity within the orientalist discourse: representation of the orient in womens travelogues and mens paintings
from 1950s onward, new theories and critical approaches burgeoned across humanities. these theories were context-oriented; as a result, the analysis of discursive practices gained significance. thus, social, political, historical and cultural discourses that have been hitherto marginalized and considered inferior to literary texts, were introduced as important texts to be analyzed by critics. o...
An Operator-Like Description of Love Affairs
We adopt the so–called occupation number representation, originally used in quantum mechanics and recently considered in the description of stock markets, in the analysis of the dynamics of love relations. We start with a simple model, involving two actors (Alice and Bob): in the linear case we obtain periodic dynamics, whereas in the nonlinear regime either periodic or quasiperiodic solutions ...
متن کاملThe Spectral Shift Operator
We introduce the concept of a spectral shift operator and use it to derive Krein's spectral shift function for pairs of self-adjoint operators. Our principal tools are operator-valued Herglotz functions and their logarithms. Applications to Krein's trace formula and to the Birman-Solomyak spectral averaging formula are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 1976
ISSN: 0956-540X,1365-246X
DOI: 10.1111/j.1365-246x.1976.tb01271.x